We Are Going To Discuss About How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only. So lets Start this Python Article.
How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only
- How to solve How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only
From the documentation,
pandas.DataFrame.drop
has the following parameters:
Parameters
labels: single label or list-like Index or column labels to drop.
axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).
columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
level: int or level name, optional For MultiIndex, level from which the labels will be removed.
inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.
errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.
Moving forward, onlylabels
(the first parameter) can be positional.
So, for this example, thedrop
code should be as follows:df = df.drop('market', axis=1)
or (more legibly) withcolumns
:df = df.drop(columns='market')
- How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only
From the documentation,
pandas.DataFrame.drop
has the following parameters:
Parameters
labels: single label or list-like Index or column labels to drop.
axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).
columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
level: int or level name, optional For MultiIndex, level from which the labels will be removed.
inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.
errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.
Moving forward, onlylabels
(the first parameter) can be positional.
So, for this example, thedrop
code should be as follows:df = df.drop('market', axis=1)
or (more legibly) withcolumns
:df = df.drop(columns='market')
Solution 1
From the documentation, pandas.DataFrame.drop
has the following parameters:
Parameters
labels: single label or list-like Index or column labels to drop.
axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).
columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
level: int or level name, optional For MultiIndex, level from which the labels will be removed.
inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.
errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.
Moving forward, only labels
(the first parameter) can be positional.
So, for this example, the drop
code should be as follows:
df = df.drop('market', axis=1)
or (more legibly) with columns
:
df = df.drop(columns='market')
Original Author Henry Ecker Of This Content
Solution 2
The reason for this warning is so that probably in future versions pandas will change the *args
to **kwargs
.
So that means specifying axis
would be required, so try:
df.drop('market', axis=1)
As mentioned in the documentation:
**kwargs allows you to pass keyworded variable length of arguments to a function. You should use **kwargs if you want to handle named arguments in a function.
Also recently with the new versions (as of 0.21.0), you could just specify columns
or index
like this:
df.drop(columns='market')
See more here.
Original Author U12-Forward Of This Content
Conclusion
So This is all About This Tutorial. Hope This Tutorial Helped You. Thank You.