How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only

We Are Going To Discuss About How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only. So lets Start this Python Article.

How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument ‘labels’ will be keyword-only

  1. How to solve How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

    From the documentation, pandas.DataFrame.drop has the following parameters:
    Parameters
    labels: single label or list-like Index or column labels to drop.
    axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
    index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).
    columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
    level: int or level name, optional For MultiIndex, level from which the labels will be removed.
    inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.
    errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.
    Moving forward, only labels (the first parameter) can be positional.

    So, for this example, the drop code should be as follows:
    df = df.drop('market', axis=1)
    or (more legibly) with columns:
    df = df.drop(columns='market')

  2. How to update pandas DataFrame.drop() for Future Warning – all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only

    From the documentation, pandas.DataFrame.drop has the following parameters:
    Parameters
    labels: single label or list-like Index or column labels to drop.
    axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
    index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).
    columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).
    level: int or level name, optional For MultiIndex, level from which the labels will be removed.
    inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.
    errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.
    Moving forward, only labels (the first parameter) can be positional.

    So, for this example, the drop code should be as follows:
    df = df.drop('market', axis=1)
    or (more legibly) with columns:
    df = df.drop(columns='market')

Solution 1

From the documentation, pandas.DataFrame.drop has the following parameters:

Parameters

  • labels: single label or list-like Index or column labels to drop.

  • axis: {0 or ‘index’, 1 or ‘columns’}, default 0 Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).

  • index: single label or list-like Alternative to specifying axis (labels, axis=0 is equivalent to index=labels).

  • columns: single label or list-like Alternative to specifying axis (labels, axis=1 is equivalent to columns=labels).

  • level: int or level name, optional For MultiIndex, level from which the labels will be removed.

  • inplace: bool, default False If False, return a copy. Otherwise, do operation inplace and return None.

  • errors: {‘ignore’, ‘raise’}, default ‘raise’ If ‘ignore’, suppress error and only existing labels are dropped.

Moving forward, only labels (the first parameter) can be positional.


So, for this example, the drop code should be as follows:

df = df.drop('market', axis=1)

or (more legibly) with columns:

df = df.drop(columns='market')

Original Author Henry Ecker Of This Content

Solution 2

The reason for this warning is so that probably in future versions pandas will change the *args to **kwargs.

So that means specifying axis would be required, so try:

df.drop('market', axis=1)

As mentioned in the documentation:

**kwargs allows you to pass keyworded variable length of arguments to a function. You should use **kwargs if you want to handle named arguments in a function.

Also recently with the new versions (as of 0.21.0), you could just specify columns or index like this:

df.drop(columns='market')

See more here.

Original Author U12-Forward Of This Content

Conclusion

So This is all About This Tutorial. Hope This Tutorial Helped You. Thank You.

Also Read,

ittutorial team

I am an Information Technology Engineer. I have Completed my MCA And I have 4 Year Plus Experience, I am a web developer with knowledge of multiple back-end platforms Like PHP, Node.js, Python and frontend JavaScript frameworks Like Angular, React, and Vue.

Leave a Comment