Pandas How to filter a Series

We Are Going To Discuss About Pandas How to filter a Series. So lets Start this Python Article.

Pandas How to filter a Series

How to solve Pandas How to filter a Series

In [5]: import pandas as pd test = { 383: 3.000000, 663: 1.000000, 726: 1.000000, 737: 9.000000, 833: 8.166667 } s = pd.Series(test) s = s[s != 1] s Out[0]: 383 3.000000 737 9.000000 833 8.166667 dtype: float64

Pandas How to filter a Series

In [5]: import pandas as pd test = { 383: 3.000000, 663: 1.000000, 726: 1.000000, 737: 9.000000, 833: 8.166667 } s = pd.Series(test) s = s[s != 1] s Out[0]: 383 3.000000 737 9.000000 833 8.166667 dtype: float64

Solution 1

In [5]:

import pandas as pd

test = {
383:    3.000000,
663:    1.000000,
726:    1.000000,
737:    9.000000,
833:    8.166667
}

s = pd.Series(test)
s = s[s != 1]
s
Out[0]:
383    3.000000
737    9.000000
833    8.166667
dtype: float64

Original Author Andrew Of This Content

Solution 2

From pandas version 0.18+ filtering a series can also be done as below

test = {
383:    3.000000,
663:    1.000000,
726:    1.000000,
737:    9.000000,
833:    8.166667
}

pd.Series(test).where(lambda x : x!=1).dropna()

Checkout:
http://pandas.pydata.org/pandas-docs/version/0.18.1/whatsnew.html#method-chaininng-improvements

Original Author DACW Of This Content

Solution 3

As DACW pointed out, there are method-chaining improvements in pandas 0.18.1 that do what you are looking for very nicely.

Rather than using .where, you can pass your function to either the .loc indexer or the Series indexer [] and avoid the call to .dropna:

test = pd.Series({
383:    3.000000,
663:    1.000000,
726:    1.000000,
737:    9.000000,
833:    8.166667
})

test.loc[lambda x : x!=1]

test[lambda x: x!=1]

Similar behavior is supported on the DataFrame and NDFrame classes.

Original Author Gordon Bean Of This Content

Solution 4

A fast way of doing this is to reconstruct using numpy to slice the underlying arrays. See timings below.

mask = s.values != 1
pd.Series(s.values[mask], s.index[mask])

0
383    3.000000
737    9.000000
833    8.166667
dtype: float64

naive timing

enter image description here

Original Author piRSquared Of This Content

Conclusion

So This is all About This Tutorial. Hope This Tutorial Helped You. Thank You.

Also Read,

ittutorial team

I am an Information Technology Engineer. I have Completed my MCA And I have 4 Year Plus Experience, I am a web developer with knowledge of multiple back-end platforms Like PHP, Node.js, Python and frontend JavaScript frameworks Like Angular, React, and Vue.

Leave a Comment