We Are Going To Discuss About Python pandas insert empty rows after each row. So lets Start this Python Article.
Python pandas insert empty rows after each row
- How to solve Python pandas insert empty rows after each row
Using append on a dataframe is quite inefficient I believe (has to reallocate memory for the entire data frame each time).
DataFrames were meant for analyzing data and easily adding columns—but not rows.
So I think a good approach would be to create a new dataframe of the correct size and then transfer the data over to it. Easiest way to do that is using an index.# Demonstration data data = 'name profession Bill cashier Sam stock Adam security' data = np.array(data.split()).reshape((4,2)) df = pd.DataFrame(data[1:],columns=data[0]) # Add n blank rows n = 3 new_index = pd.RangeIndex(len(df)*(n+1)) new_df = pd.DataFrame(np.nan, index=new_index, columns=df.columns) ids = np.arange(len(df))*(n+1) new_df.loc[ids] = df.values print(new_df)
Output:name profession 0 Bill cashier 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 Sam stock 5 NaN NaN 6 NaN NaN 7 NaN NaN 8 Adam security 9 NaN NaN 10 NaN NaN 11 NaN NaN
- Python pandas insert empty rows after each row
Using append on a dataframe is quite inefficient I believe (has to reallocate memory for the entire data frame each time).
DataFrames were meant for analyzing data and easily adding columns—but not rows.
So I think a good approach would be to create a new dataframe of the correct size and then transfer the data over to it. Easiest way to do that is using an index.# Demonstration data data = 'name profession Bill cashier Sam stock Adam security' data = np.array(data.split()).reshape((4,2)) df = pd.DataFrame(data[1:],columns=data[0]) # Add n blank rows n = 3 new_index = pd.RangeIndex(len(df)*(n+1)) new_df = pd.DataFrame(np.nan, index=new_index, columns=df.columns) ids = np.arange(len(df))*(n+1) new_df.loc[ids] = df.values print(new_df)
Output:name profession 0 Bill cashier 1 NaN NaN 2 NaN NaN 3 NaN NaN 4 Sam stock 5 NaN NaN 6 NaN NaN 7 NaN NaN 8 Adam security 9 NaN NaN 10 NaN NaN 11 NaN NaN
Solution 1
Using append on a dataframe is quite inefficient I believe (has to reallocate memory for the entire data frame each time).
DataFrames were meant for analyzing data and easily adding columns—but not rows.
So I think a good approach would be to create a new dataframe of the correct size and then transfer the data over to it. Easiest way to do that is using an index.
# Demonstration data
data = 'name profession Bill cashier Sam stock Adam security'
data = np.array(data.split()).reshape((4,2))
df = pd.DataFrame(data[1:],columns=data[0])
# Add n blank rows
n = 3
new_index = pd.RangeIndex(len(df)*(n+1))
new_df = pd.DataFrame(np.nan, index=new_index, columns=df.columns)
ids = np.arange(len(df))*(n+1)
new_df.loc[ids] = df.values
print(new_df)
Output:
name profession
0 Bill cashier
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 Sam stock
5 NaN NaN
6 NaN NaN
7 NaN NaN
8 Adam security
9 NaN NaN
10 NaN NaN
11 NaN NaN
Original Author Bill Of This Content
Solution 2
The code below includes a function to add empty rows between the existing rows of a dataframe.
Might not be the best approach for what you want to do, it might be better to add the blank rows when you are exporting the data.
import pandas as pd
def add_blank_rows(df, no_rows):
df_new = pd.DataFrame(columns=df.columns)
for idx in range(len(df)):
df_new = df_new.append(df.iloc[idx])
for _ in range(no_rows):
df_new=df_new.append(pd.Series(), ignore_index=True)
return df_new
df = pd.read_csv('test.csv')
df_with_blank_rows = add_blank_rows(df, 3)
print(df_with_blank_rows)
Original Author norie Of This Content
Solution 3
# original_df is your original dataframe
# new_df is the resulting dataframe with empty rows
# empty_rows is the amount of rows you want to insert (change to number of rows you need):
empty_rows = 3
original_df.index = range(0, empty_rows*len(original_df), empty_rows)
new_df = original_df.reindex(index=range(empty_rows*len(original_df)))
Original Author PeJota Of This Content
Solution 4
If you provided more information that would be helpful, but a thing that comes to mind is to use this command
df.append(pd.Series(), ignore_index=True)
This will add an empty row to your data frame, though as you can see you have to pass set ignore_index=True
, otherwise the append won’t work.
Original Author djvaroli Of This Content
Conclusion
So This is all About This Tutorial. Hope This Tutorial Helped You. Thank You.